Hola fellow Devs! Let’s talk about Claude Code — Anthropic’s new command-line tool that’s changing the AI game for coders. I’ve been testing it for a couple weeks now, and there’s some cool stuff to unpack.
What’s Claude Code, Anyway?
Simply put, Claude Code is a CLI tool that brings Claude’s capabilities directly to your terminal. Instead of copying/pasting between a chat window and your IDE, you can just ask Claude to help right where you’re working.
Quick Setup in VS Code
Getting started is easy:
npm install -g @anthropic/claude-code
cd your-project-directory
claude-code init
Grab the VS Code extension, add your API key from Anthropic’s console, and you’re good to go.
Chat AI vs. Agentic AI: The Real Difference
The shift from chat-based to agentic AI is bigger than it might seem at first glance.
Chat AI: You Do All the Work
With traditional chat interfaces:
// Chat-based AI interaction pattern
import { Claude } from '@anthropic/sdk';
const claude = new Claude({
apiKey: process.env.ANTHROPIC_API_KEY
});
async function chatWithClaude() {
// You: "Write me a function to sort objects"
const userQuery = "Can you help me create a function to sort an array of objects by a property?";
// Claude gives you some code
const response = await claude.messages.create({
model: "claude-3-7-sonnet-20250219",
max_tokens: 1000,
messages: [{ role: "user", content: userQuery }]
});
// You: copy code, test it, come back with issues
const followUpQuery = "Can you modify it to handle nested properties?";
// Claude: here's the updated code
const followUpResponse = await claude.messages.create({
model: "claude-3-7-sonnet-20250219",
max_tokens: 1000,
messages: [
{ role: "user", content: userQuery },
{ role: "assistant", content: response.content[0].text },
{ role: "user", content: followUpQuery }
]
});
// Repeat until you get what you need
}
chatWithClaude();
You’re the project manager — you have to:
Copy/paste code between windows
Test everything yourself
Remember context and previous attempts
Manually integrate the solution
Agentic AI: Your Coding Partner
With Claude Code:
// Agentic AI with Claude Code
import { ClaudeCode } from '@anthropic/claude-code-sdk';
const claudeCode = new ClaudeCode({
apiKey: process.env.ANTHROPIC_API_KEY,
projectRoot: './my-project'
});
async function buildFeatureWithClaudeCode() {
// You: "Hey, I need a sales dashboard"
const task = "Add a data viz component that shows monthly sales trends";
// Claude Code: "I'm on it"
const result = await claudeCode.completeTask({
task,
allowedActions: ['read_files', 'write_files', 'run_commands', 'install_dependencies'],
maxSteps: 10
});
// Claude Code:
// 1. Reads your codebase to understand it
// 2. Finds your data sources
// 3. Picks the right libraries
// 4. Installs what's needed
// 5. Writes the component
// 6. Updates imports
// 7. Adds it to your dashboard
// 8. Tests that it works
console.log(`Done! Changed ${result.modifiedFiles.length} files`);
}
buildFeatureWithClaudeCode();
Real Scenario with Claude Code
$ claude-code “Make a TS function to parse sales CSVs with date, product_id, quantity, and price columns. Group by product and sum revenue.”
Claude Code responds:
Scanning project…
Found sample data in ./data/sample.csv
Creating files…
✅ Created: — src/utils/csvParser.ts — src/types/sales.ts — tests/utils/csvParser.test.ts
Main function:
// src/utils/csvParser.ts
import fs from 'fs';
import path from 'path';
import { parse } from 'csv-parse/sync';
import { SalesRecord, ProductSummary } from '../types/sales';
export function parseSalesCsv(filePath: string): ProductSummary[] {
const fileContent = fs.readFileSync(path.resolve(filePath), 'utf-8');
const records = parse(fileContent, {
columns: true,
skip_empty_lines: true,
trim: true,
cast: (value, context) => {
if (context.column === 'date') return new Date(value);
if (context.column === 'quantity' || context.column === 'price') return parseFloat(value);
return value;
}
}) as SalesRecord[];
const productMap = new Map<string, ProductSummary>();
for (const record of records) {
const { product_id, quantity, price } = record;
const revenue = quantity * price;
if (!productMap.has(product_id)) {
productMap.set(product_id, {
product_id,
total_quantity: 0,
total_revenue: 0,
sales_count: 0
});
}
const summary = productMap.get(product_id)!;
summary.total_quantity += quantity;
summary.total_revenue += revenue;
summary.sales_count += 1;
}
return Array.from(productMap.values());
}
```
Tests are passing. Need any changes?
A Real Example: Building a Type-Safe API Client
Here’s a mini-project that shows how you might use Claude Code in a real workflow:
// Let's see a type-safe API client using TypeScript + axios
// file: src/apiClient.ts
import axios, { AxiosInstance, AxiosRequestConfig } from 'axios';
// Our API response structure
export interface ApiResponse<T> {
data: T;
meta: {
timestamp: string;
requestId: string;
};
}
// For paginated endpoints
export interface PaginatedResponse<T> extends ApiResponse<T[]> {
meta: {
timestamp: string;
requestId: string;
pagination: {
page: number;
pageSize: number;
totalPages: number;
totalItems: number;
};
};
}
export class ApiClient {
private client: AxiosInstance;
constructor(baseUrl: string, config: AxiosRequestConfig = {}) {
this.client = axios.create({
baseURL: baseUrl,
timeout: 10000,
headers: {
'Content-Type': 'application/json',
...config.headers,
},
...config,
});
// Add auth token handling
this.client.interceptors.request.use(
(config) => {
// config.headers.Authorization = `Bearer ${getToken()}`;
return config;
},
(error) => Promise.reject(error)
);
// Smart error handling
this.client.interceptors.response.use(
(response) => response,
(error) => {
if (error.response) {
console.error(`API Error ${error.response.status}:`, error.response.data);
} else if (error.request) {
console.error('Network Error: No response received');
} else {
console.error('Request Error:', error.message);
}
return Promise.reject(error);
}
);
}
// Type-safe methods
async get<T>(endpoint: string, params?: Record<string, any>): Promise<ApiResponse<T>> {
const response = await this.client.get<ApiResponse<T>>(endpoint, { params });
return response.data;
}
async getPaginated<T>(
endpoint: string,
page = 1,
pageSize = 20,
params: Record<string, any> = {}
): Promise<PaginatedResponse<T>> {
const response = await this.client.get<PaginatedResponse<T>>(endpoint, {
params: { page, pageSize, ...params }
});
return response.data;
}
async post<T, D = any>(endpoint: string, data: D): Promise<ApiResponse<T>> {
const response = await this.client.post<ApiResponse<T>>(endpoint, data);
return response.data;
}
async put<T, D = any>(endpoint: string, data: D): Promise<ApiResponse<T>> {
const response = await this.client.put<ApiResponse<T>>(endpoint, data);
return response.data;
}
async delete<T>(endpoint: string): Promise<ApiResponse<T>> {
const response = await this.client.delete<ApiResponse<T>>(endpoint);
return response.data;
}
}
// Now let's use it with a UserService
// file: src/services/userService.ts
interface User {
id: string;
name: string;
email: string;
role: string;
}
export class UserService {
constructor(private apiClient: ApiClient) {}
getUsers(page = 1, pageSize = 20) {
return this.apiClient.getPaginated<User>('/users', page, pageSize);
}
getUserById(id: string) {
return this.apiClient.get<User>(`/users/${id}`);
}
createUser(userData: Omit<User, 'id'>) {
return this.apiClient.post<User>('/users', userData);
}
updateUser(id: string, userData: Partial<Omit<User, 'id'>>) {
return this.apiClient.put<User>(`/users/${id}`, userData);
}
deleteUser(id: string) {
return this.apiClient.delete<User>(`/users/${id}`);
}
}
// Using it in your app
// file: src/index.ts
async function main() {
const api = new ApiClient('https://api.example.com/v1');
const users = new UserService(api);
try {
// Get users with pagination
const { data, meta } = await users.getUsers(1, 10);
console.log(`Found ${meta.pagination.totalItems} users`);
// Get one user
const user = await users.getUserById('user-123');
console.log(`User: ${user.data.name}`);
// Create a user
const newUser = await users.createUser({
name: 'Jane Doe',
email: 'jane@example.com',
role: 'editor'
});
} catch (error) {
console.error('API failed:', error);
}
}
Why Agentic AI Matters for Devs
The biggest benefits I’ve found from using Claude Code over chat-based AI:
Zero context switching — Stay in your terminal instead of bouncing between windows
Project awareness — It understands your codebase structure without you explaining it
Full execution — Not just code snippets, but complete implementations with tests
Less handholding — Tell it what you want, not how to do each step
The Future Is Collaborative
The real shift isn’t just technical — it’s about the relationship between developers and AI.
With chat interfaces, AI is a glorified search engine that gives you code snippets. With agentic tools like Claude Code, AI becomes a pair programmer that understands your codebase and can tackle complex tasks independently.
TL;DR
Claude Code brings AI directly to your terminal, while GitHub Copilot in your CLI is useful in other ways, claude in the terminal offers some strong and quick actions letting you delegate coding tasks without leaving your development environment. It shifts AI from being a reactive chat partner to a proactive coding assistant that can understand and modify your project.
If you’ve been copy/pasting between chat windows and your IDE, give Claude Code a try. This isn’t necesarrily a direct replacement for things like Agentic AI that run direct within the context of your editor and allow you to accept or reject changes like AugmentCode or Cursor (or even GitHub Copilot Agentic for VS Code). The installation is easy, and even in preview, it’s already changing how I approach things and has proven to be helpful.